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ABSTRACT

The power density spectrum of the received acoustic waveform after reflection off the time-varying
random sea surface is e¢valuated at an arbitrary observation point in the farfield. For a monochromatic
transmitted signal and a narrow-band Gaussian surface-height variation, the received acoustic spectrum
is shown to consist of an impulse at the transmitted acoustic frequency plus sidelobes centered at fre-
yuencies separated from the transmitted f->quency by multiples of the surface center frequency. The
powers in the coherent component and scarttezed sideband cemponents of the received pressure waveform
are evaluated in terms of the surface roughness and spatial-temporal correlation function of the surface.
For the special case of elliptical contours of iso-correlationat zero time delay, the sideband powers and
scattering strengths are evaluated in terms of two fundamental parameters that include the geometry of
the cxperiment, the incident acoustic frequency, the root mean square (rms) surface height, and tie
surface correlation distances.

TAe rms bandwidths of the sideband scatter components are evaluated for small surface roughness and
shown to be approximately proportional to the square root of the sideband number, Numerous examples of
sideband scattering strengths for a variety of spatial correlation functions, including exponenrial and
Gaussian decay as special cases, are given,
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1 GLOSSARY"

Q Location of acoustic source
A Location of observation point
) Origin of coordinates
R, Distance from origin to observation point
.0 A Unit vectors from origin in direction of source and receiver, respectively
.Tf Unit vectors in x,y,z directions, respectively
aQ’bQ’cQ Direction cosines of source
. a,, bA, <, Direction cosines of receiver
a,b,c Sums of direction cosines
t Time
8 Position
d(x,y,0 Surface height at position x,y at time t
f Frequency
f, Acoustic frequency
plo Reccived pressure waveform
A, Acoustic wavelength
k, Acoustic wave number
B Geometric scale facror (See Appendix A)
pl(x,y) Incident pressure field
s(t) General transmitted signal pressure waveform
SiH Voltage density spectrum of s(t)
: r(c) Received pressure waveform
v Propagation velocity
H(fa; t) lastantancous transter function of surface
p (0 Coherent component of received presure waveform
fy Characteristic function of surface
9,9, Probability density functions of surface heights
P Auxiliary function, Eq. (9)
p (0 Scatter component of received pressure waveform
J Autocorrelation function of incideat illumination
S Scattering strength
' h,0 Aamplitude and phase of surface-height variation
f, Center frequency of surface-height variation
. m Order of sideband
Al Complex amplitude of mth sideband component
o’ Mean square surface height
Rp Correlation function of received pressure
R Correlation function of scatter pressure
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*In order of appearance.
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p Normalized spatial-temporal cormrelation function of surface
B Sutface roughness parameter, Eq. (42)
G, Spectrum of scatter component
e Complex envelope of p
4“ Kronecker delta (=1 if k = 1; 0 otherwise)
T, Spectral shape of mth sideband
Sm Scattering strength of mtt sideband
Py Special form of spatial-.emporal correlation, Eq. (52)
L‘,Ly,L Correlation distances
P, Auxiliary function, Eq. (54)
a Surface correlation parameter, Eq. (58)
u, Auxiliary function pr-aortional to scattering strength in specular direction, Eq.(60)
v, Auxiliary function proportional to scattering strength in nonspecular directions,
Eq. (62)

3 Low-pass spectrum (See Appendix D)
B, Rms bandwidth of surface-height spectrum.

B Rms bandwidth of mth sideband
Al Directional wave spectrum
8 Acceleration of gravity
A? Directional wave spectrum (polar form)

o Surface-height spectrum
A§ Special form of direcuonal wave spectrum, Eq. (87)
R,Q Parameters of the spatial correlation decay (See Section 4.3)
(] Dimensionless auxiliary function proportional to surface-height spectrum, Eq. (96)
z Dimensioanless parametzr proportional to frequency, Eq. (97)
x(t) Stationaty single-sided process (See Appezdix B)
x, (8),x,(v) Real and imaginary parts of x(t), respectively
Hilbert transform
I Average scatter intensity (See Appendix C)
Q Solid angle of receiver

o, Scattering coefficient or scattering cross section (See Appendix C)
LU Average scatter intensity
4 Average incident intensity
.nc
A Effective area of insonification

glu,v,p Normalized cross-spectrum {See Appendix D)
BpP, Auxiliaty single-sided functions (See Appendix D)
Pu Hilbert transform of p
q Auzxiliary variable (= Q/R; see Appendix ¥
L Limit of integration (See Appendix F)
E Error of integration (See Appendir F)
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overbar Ensemble average
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Lachlais

SPECTRUM OF A SIGNAL REFLECTED FROM A
TIME-VARYING RANDOM SURFACE

1. INTRODUCTION

The purpose of this study is to determine the spectrum of anacoustic
signal reflected from a time-varying random surface. Of the many
scientists who have investigated scattering from such a surface, we
will mentiononly a few. Rayleigh considered a sinusoidal fixed surface
and solved for the reflected pressure for a given incident monochromatic
wave, Eckart's classic work [1] on scattering from a random surface
employed the Kirchoff method; i. e., he assumed that the surface could
be represented by the tangent plane to the surface at each point
of incidence, Starting with the Helinholtz equation, Beckmann and
Spizzichino [Z] alsoused the Kirchoff approximation, but, in their deri-
vation, they differentiated with respect to the normal to the surface
instead of the vertical axis, andused an integration by parts to eliminate
edge effects, Thus, they obtained a different geometric factor from that
of Eckart [1] for the reflected pressure, LaCasce and Tamarkin [3] per-
formed experimental studies on the reflection off a fixed sinusoidal
pressure-release surface. Horton and Muir [4] also performed experi-
mental studies on the scattering froma rough random surface, compared
their results with a modified version of the Eckart theory, and found
good agreement., Wagner [5] considered a Gaussian surface, andusing
the parameters of root-mean-square (rms) height and correlation of
surface heights, and treating the incident waves as rays, determined
the amount of shadowing as a function of the grazing angle of the incident
acoustic wave, From these results, a correctionvalue for the shadowing
effect was made by Wagner [5] to the Eckart [I] and Beckmann and
Spizzichino [2] theories. Marsh [6] also utilized the Rayleigh methed
and considered the signal reflected from a random surface to consist
of an infinite set of plane waves, Ry applying boundary conditions on
the surface, he solved for the scattering coefficient of the surface
reflection,

The number of investigations of a time-varying random surface is
considerably less than that of a fixed surface, Of these, we will mention




only the works of Roderick and Cron [7] and Parkins [8]. Roderick
and Cron considered a sinusoidal traveling surface wave, where, for a
single-frequency incident acoustic wave, the frequency of the reflection
in the specular directionis the same as the incident frequency, and the
frequencies in the nonspecular directions are equal to the incident fre-
quency plus multiples of the surface frequency. They compared the
theoretical predictions of the amplitudes of these components with ex~
periment. Parkins considered a time-varying random surface, a joint
Gaussiandistribution of heights, anda Neumann-Piersonsurface-height

spectrum, For both small and large surface roughness, he obtained
the scattered acoustic spectrum,

In our work, we start with the assumptions used by . :er--

o the Kirchoff method [2, p. 20] -~ the method of physical optics —
is used,

e the insonified area is in the farfield (Fraunhofer region) of the
source,

e the observation point is in the farfield of the insonified area,
e the surface is pressure-release,

eno shardowing or multiple reflections occur,

ea directional source is used, and

ethe surface particle velocity is small compared with the speed
of sound.

Starting with the Helmholtz integral and a given incident single-
frequency acoustic source, we obtain the {complex) pressure at the
observation point, The surface heightis designated a function of position
x,y, and time t; the first- and second-order probability distributions
of height are assumed independent of absolute position and time and
dependent only on tte differences in the x and y coordinates and time,
That is, the surface is assumed homogeneous and stationary. The
autocorrelation function of the received acoustic complex pressure
is obtained by using these properties, The Fourier transforin of the
autocorrelation functionthen yields the received acoustic power spectrum,

okt L




The equation for the power spectrum is then specialized to the case
of a joint Gaussiar distribution of surface heights and a narrow-band,
surface-height spectrumat a point; for this case, the spatial-temporal
correlation function of the surface can be reresented as a sinusoidal
oscillation in time-delay with a slowly varying amplitude and phase, It
is then assumed that the iso-values of the surface-correlation function
is an ellipse; for this case, it is shown that the received acoustic spec-
trum consists of a series of spectral’obes or sidebands, each separated
from the incident acoustic frequency by multiples of the center fre-
quency of the surface variation, plus an impulse at the incident acoustic
frequency, The relative powers in these sideband components are
evaluated in terms of two fundamental parameters: the first is the
surface-roughness parameter, and the second is related to the corre-
lation distances of the surface (the horizontal separation for which the
surface correlation falls to e~! of its origin value). The powers in
the sidebands are numerically evaluated and plotted versus these two
parameters, for both specular andnonspecular directions, for a variety
of spatial correlation functions, including exponential and Gaussian
decay as special cases,

2, REFLECTION FROM A GENERAL TIME-VARYING SURFACE

2.1 RECEIVED PRESSURE WAVEFORM REFLECTED FROM
A TIME-VARYING SURFACE

The geometry of the scattering experiment is depicted in Fig. 1.

z-axis

V - X-QXiS
M ILLUMINATED AREA OF SURFACE

Fig. 1 - Scauering Geometry




The source ot acoustic radiation is at Q, and the observation point is
at A. The symbol O is an origin of coordinates. Lei the umt vectors
in the x,y,z directions be ,3,k, respectively, and let uQ and uA
be unit vectors from O in the directions of source Q and receiver
A, respectively, Then,

uQ=aQi+ij +ch ,
u, =a,i a-bA,+cAlt ,

where (a , b o ) and (a bA, c ) are the direction cosines of the

source an% recexver, reSpectxvely
Let the sums of direction cosines be denoted by

n=aQ+aA ,

bng+bA » (2)

c=Cc, +¢C

Q A

The specular direction corresponds to a=b=0; i.e., a,= -ag,
b, = -by, and ¢, = ¢,. It is the direction in which all the reflected
energy would occur for a mirror-like surface,

The height of the reflecting surface at position x,y fluctuates with
time and is denoted by {(x,y,t). Theaverage surface heightcorresponds
to {=0. Under the assumptions given in Section 1, the {complex) re-
ceivedpressureat A, for asingle-frequency excitation exp(iZ-rrf t) at
Q, is givenby [8 Egs. (1) and (10)!; 1, Egs. (1) and (6)%; 4, Eq. (9);
9, Eqs. (6.9) and (6.24}]

B
p(0) = —i expli(2rf ¢t ~k, R )1 —— [fdxdy B; (z,y) -
AR
a’ o (3)
explik, (ax + by + c{(x,y,1))] ,

where?

f, = acoustic frequency,

A, = acoustic wavelength,

1The factor ¢ is misving in (10) of Ref. 8.

2The exponent inside the integral in (6) of Ref, 1 should be negative; see also Ref. 4, footnote 6,

3Strictly, the argument t in ¢ should be replaced by the retarded time taken by a signal to
wravel from a reflecting point (x,y) to A, However, for a slowly fluctuating surface that does not
change much in the tirre taken for sound to piopagate across the illuminated region, a good approxi-
mation is t-R_/v, where v is the propagation velocity. The delay R /v has beendropped in { in
(3) for notatmnal simplicity, Also integrals without limits are over the range of nonzero iategrand,




k, = acoustic wave number (Zﬂ/l\a),

R - distance from ongin O to observation point A,

’ﬁi (x,y) - spatally dependent component of the incident pressure field on the reflecting
surface (without the phase factoi due to propagation over the distance from Q
to 0), and

B - real scale factor depending only on the geometry of the experiment.(See Ap-
pendix A for further details on this factor.)

(Since some authors assume an excitation of the form exp(i2nf,t),
differences in sign with (3) will occur in those references).

For a general signal s(t) transmitted, with voltage density spectrum
S(f), the received pressure waveform r(t) is given by

r(e) = fdf_p(e;£) 5(F)
(4a)
= [df_exp(i2nf ¢) H(f;¢) S(£,) ,

where
H(f ;) = i exp(~ik K )

fldxdy p,(x y) -
AR, (4b)
explik (ax+by + c {(x,y,0)]

We have indicatedexplicitly the dependence of receivedpressure p
on acoustic frequency f, (ﬁi is alsodependent on f,) and used (3). The
representation in (4a) shows that the surface can beviewed as a linear
time~-varying filter on transmitted acoustic waveforms with instantaneous
transfer function H({f,;t) given by (4b).

For a real sinusoidal acoustic signal transmitted,
s(t) = cos(2nf 0 = Relexp(i2nf o)} | (5)

the real receivedpressure is given by Relp(t)} . The power in the real
received signals is

2 __l_ . 2=_1.' 2
Re ip(t)i—4[p(t)+p Q) 2|P(t)| ) (6)

where we have used the fact that p2(t) = 0; this follows from (3) upon
noting that if ( is stationary, then p(t) is stationary, narrow-band, and
centered around frequency f, and has its spectral content confined to
positive frequencies. (See Appendix B, ) Under the reasonable assumption
that surface height {(x,y,t) varies slowly with time, as compared
with exp(i2nf, t),4 p(t) is narrowband. Thus, attention can be focused on

4 For example, surface-height variations typically have spectral content in the neighborhood
of fractions of Hertz, whereas acoustic frequencies are of the order of tens of Hertz (and greater).




complex pressure p(t) and appropriate real parts or factors of 1/2
applied later wher necessary.,

2.2 COHERENT AND SCATTER COMPONENTS FOR A RANDOM
SURFACE

The received pressure for a single-frequency excitation is given
by {(3). The coherent component [2, Section 7. 3] of this waveform is
defined as its mean value (ensemble average over all possible surface

states): B
p.(® =p(0 = ~i expli(2af ¢~k R )] —— [fdx dy P, (x,y) -
AR, (7
explik_(ax + by)] fc(k.c) ,
where

frlk, o) = explik,c {lx,y,0]
= [dLewplik, c{) q,({) (8)

is the first-order characteristic function (CF) of the surface wave

height, Since we are assuming a homogeneous stationary surface, q,

is the first-order probability density function (PDF) of the surface

wave height and is independent of absolute position x,y and time t.

The first-order CF contains all first-order statistical information .
about the surface wave-height variation since it is a Fourier transform

of the first-order PDF,

If we define the double integral in (7) as P,

[faxdy®, (x,y) explik (ax + by) | =P (k_a,k b , (9)
the coherent compconent is given by
B
p. (0 =-iexmpli(2nt e -k,no)l-;;- Pk a,k,b)f, ko - (10)
a o

This is a general relation for the received coherent component of
pressure for any surface statistics, degree of roughness, and obser-
vation point, .

Since the effective extents of the incident illumination on the surface
are much larger than the acoustic wavelength, P takes on appreciable
values only when a= 0, b =0, which corresponds to the specular
direction. (This follows upon noting that P in (9) is a double Fourier
transform of the incident pressure /p\i .} Therefore, the coherent
component is appreciable only near the specular direction.




For a perfectly smooth surface, ¢ =0, and the first-order CF
equals unity, As the surface roughness increases, the magnitude of the
CF decreases, thereby causing the amplitude of the coherent component
to decrease, The coherent component is not identically zero for a
rough surface; however, it is negligible for a very rough surface,

From (10), since the only dependence of p_(t) on time is via the
term exp(i2-~-f,t), the spectrum of the coherent component must be
an impulse at irequency f,, just likethe transmitted signal spectrum,
However, the aiaplitude and phase shift of the coherent component de-
pend on the physical locations of the transmission and observation
points and the degree of surface roughness.

The scatter component of the received pressure is defined as the
remainder

P, =pl)-p, () =pld-p©® , (11)

which has zero mean. In order to evaluate the mean-square value’ of
the scatter component, we note that

lp, 1 2=1p®| 2= lp 0] = [p® |- [p@]? . (12)

That is, the mean square value of the scatter component p_ is equal
to the mean square value of the total received pressure p less the
squared magnitude of the coherent component p, . Using (3). we obtain

— [/ B\
[p0)] 2= frffd’ldyl d‘z dy, 3i(!pvl) f’i‘ (x.‘, Yz) .
R, (13)

exp[ikaa(xl-xz) + ik‘b(yl—yz)]fg(k‘c, -k, cx-x,y,-y,,0) ,

where

f((kac, -k, cu,v,7) =explik, cdix,y, t)-ik cdllx-u,y-v, t-1)

= [fd§1 diz exp(ikacgl —ik_c)q,l( o Cz;u, v, 7) (14)

is the second-order CF of the surface wave heights, Since the surface
is homogeneous and stationary, q, is the second-order PDF of
surface wave heights and depends only on differences in position and

time, If we let u=x, -x,, v=y, -y, in (13), there follows
——— [ B\’
ipl9]? =(;——§-) ffdudv J(u,v) exp[ik'(au+bv)]f§(k‘c,—k.c; uw,v,0) , (15)
a o

5 Me-n magnitude-squared value, more precisely.




where J is the autocorrelation of the illumination ﬁi incident on the
surface:

J (u,v) = [fdxdy B, (x,y) ﬁi' (x~u,y-v) . (16)

Before forming |[p, (t)}? from (12), we first note from (9) that we can
express

[Pk a,k b)|?=ffdudv J(u,v) explik (au+bv)] . (17)

Therefore, using (12), (15), (10), and (17), we obtain
|ps(t)|2 = |p0]? - Ip,_.(t)l2

8 2
-_-(.;._.) ffdudv J(u,v) exp[ik‘(au+bv)] . (18)

a o

[f;(kac,-k.c;u,v,O) - Ifg(k.cHz] )
This is a general relation for the mean-square value of the received
scatter component in terms of the autocorrelation function J of the
incident pressure ﬁi on the reflecting surface and on the first- and
second-order CF's of the surface-heightvariations {. Noassumptions
about the degree of surface roughness have been made,.

We will now make the reasonable assumption that the effective ex-
tents on the surface of the incident illumination § are much larger
than the distances at which the surface heights are sta{tistically dependent
on each other, Mathematically, this is equivalent to assuming that the
bracketed difference of CF's in (18) decays to zero in u and v much
sooner than J{u,v) does, (The difference in CF's goes to zero as
lul, |v] + = because then

f;(kac,-kac;u,v, 7) -—olfg(k’c)lz) (19)

The double integral in (18) then is virtually unchanged if J(u, v) is re-
placed by its origin value, yielding

—_— [ B \?
FRUE 2=(A ) J(0,0) ffdudv exp lik (au+bv)] =
R

(20)
{fz(kac,—kac;u.v,O) - f;(kac)i 2)

This double Fourier transform on space variables u and v is as
far as the analysis can be carried without further assumptions on
wave-height statistics. The surface statistics needed in these quantitative
measures of the coherentand scattered components are contained entirely




in the first- and second-order surface height CF's, Arbitrary surface
roughness is allowed.

As the surface roughness decreases, the difference in CF's in (18)
and (19) goes to zero (because ¢ - 0). In this case, the scattered com-
ponent disappears, as indeed it must for a smooth surface.

In Appendix C, the scattering si:rength‘S S of the surface, defined
as the ratio

avesage scatter . ‘ntensity at receiver due to unit
scatterir.g ar: 7, referred 1o unit distance

— , (21)
averay  .cident inteasity on surface
is shown to be given by
[ps(t)l2 R:
§= (22)
cQJ(O,O)
If we substitute (20) into (22), the above equation becomes
B 1 .
=— .?ffdudvexp[lk.(au+bv)] .
‘e M (23)

[f;(k_‘c,-kac;u, v,0) - lfg(k‘cH 2
This is a dimensionless quantity, The dimensionless factor BZ/CQ
depends solely on the geometry of the experiment.
For a surface of very slight roughness, i,e.,
k_ c max|{(x,y,0} <<1 , (24)

we can approximate the exponential in (3) as

explik‘c dx,y,0} =1 +ik ¢ lx,y, 0 . (25)
Then, (3) becomes

plo) =-i expli2nf t -k R )] 'XP_ Pk, a,k b
aRo (26)
+ik cffdxdy B, (x,y) explik (ax+byM] {(x,y,0)

The term "scattering strength” is used in this report as an intensity ratio and is not converted
to decibels,




The first term of (26) is the coherent component, and the second term
of (26) is the scatter component. This equation for the coherent com-
ponent is a special case of (10), where CF fy(k,c) is approximately
unity, Thus, the general results (10) and (18) can be reduced to special
cases, including very slight roughness (or very rough surfaces), as
desired, by appropriate choice of CF's, Also (23) is a general relation
for the scattering strength, which isapplicable to any degree of rough-
ness and surface statistics,

3. REFLECTION FROM A NARROW-BAND, TIME-VARYINGSURFACE

In this section, we restrict consideration to the case where the
surface-height variation at each point of space is anarrow-band function
of time [10, pp. 347-348 and Section 8, 5]; this is the case, for example,
when the sea surface is characterized as swell [10, Section 1. 2].

3.1 NARROW-BAND COMPONENTS OF RECEIVED PRESSURE
WAVEFORM

The surface height for this case of narrow-band variation can be
represented as

{x,y,0 =hix,y,1) cos[anst +0(z,y,0] , 27

where, for fixed position x,y, the amplitude h and phase 6 vary
slowly with time t in comparison with cos(2wf_ t). The center fre-
quency of the surface-height variation is f . If we substitute (27) into
(3) for the received pressure and use the expansion [l 1, 8, 5114]

explik, ch cos(2nf ¢ +9)]

% 28
= X i"J_(k, ch) explim(27f t+6)] , (28)

the received pressure can be represented as

o0

p= 2 A _(0expliza(f +mf)e] , (29)

m =00

where

A_(0) = -i ep(~ik R)) T;%: i” [l dxdy B, (x,y) ]m[k.ch(x,y, ol . (30)

explik_(ax+by) + im O(x,5,0)]

10




Since h and 8 vary slowly with time, so alsodoes A _(t). However,
if k. ch,, >>1or m>>1, the rate of variation of A _(t) is much
faster than that of h or 6. This may be seen by noting that Bessel
function J (x) is anoscillatory functionof x; thus, J [k ch] can go
through many cycles of variation while h goes through but one, if
k ch >> 1, Also, if m>> 1, exp{im@) varies much faster than 0.
The upshot is that A_(t) of (30) will contain a considerably higher
frequency content than either h or @ if either of the above conditions

are satisfied,.

Equation (29) expresses the received pressure waveform as a sum
of narrow-band components (if k ch ~~ and m are not much larger
than unity), with the mth component being centered at frequency f, + mf, .
That is, the received pressure has spectral loLes displaced from the
transmitted acoustic frequency f, by multiples of the surface center
frequency f . In addition, thereis the coherent component at f,. This
behavior is depicted in Fig. 2.

COHERENT COMPONENT
fo2f, £h f 4f Rt

Fig. 2 - Received Acoustic Spectrum

As a special case of (30), consider a travelirg sinusoidal surface
of fixed amplitude:
hix,y,t) =h ,
31
Olx,y, 0 =c x+c,y+c, (31)
¢, and c, are related to the direction of travel of the surface wave
and its velocity of propagation, and <, is the phaseat x =y = 0, Then,
using (9), (30) becomes
A () =~i exp(—ikakc) ——E— i'“]m(kach) exp(imc3) P(k.a+mc1,kzb+mcz) »(32)
l 9
which is independentof time. This case has been investigated previously

[7 Appenchx]

11
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Now if the surface 1s actually random, the quantities h and cj,
above, could beconsidered as random variables, with the PDF for <,
uniformover a 2r iuterval. In this case, the mean (ensemble averagc)
of the mth comples amplitude A_(t) in (32) is zero for m ;( 0, thus,
there are no coherent components inany of the sidebands. For m = 0,
an assumption on the PDF of h is necessarytcevaluate the ensemble
average’ m For example, for a Rayleigh FDF of surface heights,

2
%e"p<_2—h‘;z')“h>0 . (33)

o

where o s the rms wave height, the meanvalueof A (t) [11, 6.631 4]

1s
B

AR

a o

A0 - -1 expl-1k R ) Pk, a.k,b) exp(-%k, 2c20?)

(34)
However, {34)coupled with (27)is seen to be but a special case of (10)
when (¢ is first-order Gaussian:

£,k 0 = exp(-tikic?o?) . (35)
Thus, the approach given in Subsection 2.2 is a very power{ul one for
evaluating the coherent component, and includes numerous special
cases. Nevertheless, (29) and {30} are useful for lending insight into
the spectral behavicr cf the receivedpressure waveform foranarrow-
band, surface-height variation. They could beusedas che starting point
for the theory to be developed in the next subsection, but a more com-
pact approach has been utilized there.

3.2 SPECTRA AND PCWER OF INDIVIDUAL NARROW-BAND
COMPONENTS

The received pressure waveform p(t) was given in (3) and the
coherent component (the mean of the received pressure) in (10). We
now wish to evaluate the correlation function of p, and then the
spectrum, for a narrow-band, surface-height variation. The correlation
function R, of p is, by asimple generalization of (13) through (15),

Rp(r) =p©p'(t-7)

=<)\[I: >- exp(i2nf 7) [fdudv]lu,v) explik_(au +bv)]f,,(kac,—kac; u, v, 7)
a o

e . . -
Since the suface process and, therefore, the received acoustic process are no ergedic in this
case, this average 1s not equal to the time average over individual member functions,

12
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—— —— 2
=p) p*le-? +(Al; ) exp(i2nf 7) [[dudv] (u,v) explik (au+bv)] -
a v/
(36)
(e, e, -k, csu,v,7) - £,k |2,

where we have used (10) and (17). We define the covariance function of
p as the correlation function of the ac component (i, e,, scatter com-
ponent) of p:

R(N=p (dp "7

=lp) -p®) [p* (c-7) —p* (c-1)

/ 2
=(’\i ) exp (i27f,7) ([dudv] (u,v) explik, (au+bv)] -

a o

(37)

(ke -k, c3u,v, 1) = [ £k, 0)| 2]

Equation (37), a gencral relation for the correlation function of the
scatter component, reduces to the mean-square pressure of (18) for
r =0,

Again we make the assumption that the effective extents on the
surface of the incident illumination P. are much larger than the dis-
tances at which the surface heights are statistically dependent on each
other, and get the approximation (See (18)through (20)) for the correlation
of the scatter component:

2
R, (7 =<,\[; ) expli2nf_7) J (0,0) ffdudvexp[ika(au+bv)]

a Q

(38)
[f;(k‘c, -k, cuv,7) = [0k o) 2]
At this point, we make anassumption about the statistics of the surface

heights, namely, that the second-order PDF of surface heights is joint
Gaussian [10, pp. 343-345]. Then [12, Eq. (8-23]],

fg(kac, ~k, ciu,v, ) = exp[—kiczozll—p(u,v,r)n N (39)

where o is the rms wave height and p is the normalized spatial-
temporal correlation function of surfaceheights, assumed homogenecus
and stationary:

o?plu,v, 1=d{x,y,0 {(x~u.y-v,t~7) . {M
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If we substitute (39) into (38) and use (19), there follows for the
correlation function of the scatter component

2
R (1) = B expli2nf_ 1) §(0,0) exp(-£Y ffdudvexplik (au+bv)] -
R (41)

lexpiB2plu, v, Nl -1] |,

where we have defined the surface roughness parameter [2, p. 82, Eq. (10)]
B=k,co . (42)

The mean-square value of the scatter component for the Gaussian surface
is given by substituting 7= 0 into (41); then only knowledge about
p(u, v, 0), the normalized correlation between two separated surface
heights at the same instant of time, is required.

Thus far, the surface correlation function p(u,v,7) has been
general, The spectrum G, of the scatter component is given by the
Fourier transform of (41),

Gs(f)=fdrcxp(-i2nff)Rs(?) , (43)
and generally can be numerically evaluatedbya Fast Fourier Transform,
(FFT). Thus, the received scatter-pressure spectrum could be
evaluated from (41) and (43) for any degree of surface roughness, with
no assumptions about narrow-band surface variation and narrow-band

components of the received pressure, However, a double integral and
an FFT is involved.

The approach taken in this report is to specialize to the case of a
narrow-band, surface-height spectrum, Then, p takes the form (See
Appendix D )

plu,v,7) =Relplu,v, r) exp(i2nf 1)}

= |plu, v, 7)| cosl2nf 7+ arglplu,v, ol , (44)

where g(u,v,r) is the complex envelope of p(u,v,r), and varies
slowly with 7 as compared to exp(i2nfzr).

Upon substitution of (44) into {(41), and using the expansion [1 1, 8.5114
and 8, 406 3]

"' i1

exp(xcosd) -

I,(x) exp (imd) , (45)

14
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we get

. 2 o0
Rs(r)=(\i) expliznf,) ] (0,0} exp(-BD) I [[dudv . (46)

cxp[ik.(au-l»bv)] [lm (Bl plu, v, N ]) - Som] exp(i2nmf 7 +imarglp(u, v, 1) ,
where &, is the Kronecker delta,

The spectrum of the scatter component is obtained by Fourier
transforming (46):

A R m = =00

a o

2 00
Gs(f)=(B) J0,00 3 T, (ff-uf) , (47)
where

T, (0 = [drexp(-i2nfs) exp(-B?) [fdudvexplik (au+bv)l -
- (48)
[L.(B? 1ot v. ) -5, | emplimarglot, v, D) .

Thus, the scatter spectrum is composed of spectral lobes, or sidebands,
centered at frequencies equal to the acoustic frequency f, plus
multiples of the surface center frequency f , as anticipated by (29)
and (30) and shown in Fig, 2, The mth order sideband is defined as
that spectral lobe centered at frequency f, + mf,. The zeroth order
sideband is centered at f,, but is spread in frequency; it is distinct
from the coherent component of the received pressure, which has a
delta function at frequency f,.

For a given surface spatial-temporal correlation function p,
observation point (a,b,c), and surface roughness p, (48) can be
numerically evalaated (by a double integral and FFT) for the spectrum
of the mth sideband component of the received scatter pressure. The
total power in the mth sideband is obtained by integrating the mth term
in (47) over all frequencies, and is denoted by

—_— 2
Ipm(t)l2 =(-x%_) 10,0) exp(-Bd ffaudvemplik (aun+bv)] -
Ao (49)

[l_ (82 |ela, v,0)]) - 80..] explimargip(u, v,0)})

15




The scattering strength of the mth sideband is defined in a manner
similar to (C-12) in Appendix C as
(©2rR? B? 1
=l—p-'4—-—|—-9=—- -—!-exp(—Bz)ffdudve!p[ik.(au+bv)] .
CQ)(O,O) cQ A. (50)

[llll B2l pu,v,0) - 80_] exp (imarg ip(u, v, 0)})

The scattering strength S, depends on the spatial-tempcral correlation
function g(u,v,r) at zero time delay {7 = 0).

S

3.3 SPECIAL FORM OF SURFACE CORRELATION

Thus far, the spatial-temporal surface correlation function p(v,v, r)
has been general, except for the narrow-band assumption. Wenow wish
to specialize to a particular form. Note first that if z is purely real,
but perhaps negative,

,Uz]) explimargizl) =1 _(2) . (51)

Now consider that correlation function p has the form

oa, v, r)=p‘( @2@2 ,r) (52)

That is, for a fixed delay r , contours of iso-correlation values are
elliptical® (There is no need to consider a rotated cllipse if the x,y
axes are aligned with local surface directional properties.) Distances
L, and L, are the (correlation) distances in the x and y directions,
respectively, at which the correlation is down to a specified fraction

(e.g., 1/e) of its peak value,

Several important special cases of surface correlation can be
subsumed by (52). For example, if the correlation distances L  and
L' are equal, the surface is isotropic. However, if one of the corre-
iation distance is infinite, the surface correlation function is one-
dimensional; i.e., it depends ononly one of the variables u, v, Further
specializatior of the ''"one-dimensional'' surface-correlation function
would be a periodic ''one-dimensional'' surface-correlation function,

and as a particular case of thelatter, a sinusoidal surface-correlation

8 See for example, Ref, 13, p, 81, where experimental results of this form have been obtained,
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function, Thus (52) is particularly useful for detailed investigation
because it retains a great deal of generality andis areasonable approx-
imation to many practical situations,
Using (D-2) and (52), we note that
plu,v,-7) =plu,v,7) . (53)

That is, surface correlation p is even in r for any u,v, under
assumption (52). Employing (D-15) through (D-17), we have for this case

of (52), P
plw,v,0) = p, ( ’(:x 2+ e_y)z ’o> =p, (‘/GIT)Z +€:)2) . (54)

If we combine (50), (51), and (54), the mth order scattering strength is

2
S, -_-:B: -)‘17 exp (-89 ffdudverplik (au+bv)] -

[ (V6™ € )+

Since I (x) =1 _(x), the scattering strengths of the pair of symmetrically
located sidebands at f, - mf, and f, + mf, are equal, under the
assumption (52); this is not true for general p. When we let

(55)

u=Lxrcose s
(56)

v=LytsinO ,

in (55)and perform the integrationon €, the scattering strengthbecomes

B2 L“Ly n @ 2
s, EPe 27 exp(-B?) [ drr], lar) [l (B0 -5, . (57)

where
ask.\lazL§+b2L: . (58)
Recollect from (42) that )
B=k,co . (59a)

The fundamental parameters a and B aredimensionless andare basic

measures of surface behavior in the horizontal and vertical directions,
respectively. The former is related to the correlation distance of the

surface, whereas the latter depends on the surface roughness,
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The quantity a in (58) can take values in the range from zero to
very large values compared with unity, For example, in the specular
direction, a = b=0 and a = 0, However, for other directions, if the
ratio of correlation distance to acoustic wavelength is much larger
than unity, a takes on large values. Of course. a can not become
arbitrarily large by letting the correlation distances increase, because
they have been assumed less than the illuminated extents. (See text
following (18).) The quantity B in (59) can take values in the range
from zero tovalues of the order of 10 without violating the conditions
stated in the paragraph following (30). Thus, for a smooth surface,
B =0, whereas, for a roughsurface, B cantakeonvery largevalues.
But, in this latter case, the sideband components in Fig. 2 of the received
scatter pressure would spread out significantly infrequency and over-
lap each other. These sidebands can not be separated at the receiver
by a filter, and the scattering strength S would lose its meaning.
It would be necessary to resort to the general case given in (41) and
(43) for the received scatter spectrum to find how much power lies in
a particular spectral band.

The scatter correlation function for the elliptical spatial correlation
case is obtained by substituting (52) into (41):

2
R ()=27L L (Ai ) exp (i2nf, 1) ] (0,0) exp(-2 -

a o

0 (59b}
[ dec] (ao) [exp !szl (e, Ni-1]

However, for our purposes in this report, in order to retain physical
significance and interpretation for scattering strength S;, weconsider
a and B upper-limited to values of the order of 10.
For the specular direction, (57) becomes (See Appendix A}
Sy =cQ(k.Lx) k,L)U_(B) , (60)

where
U_(B) = (207! exp(-B2) °f° dr '[l..(szz('» -8, - (61)

The function U_ (B) in (61) depends on surface roughness $ and
the form of the spatial correlation function p,. In Section 5, plots of
U_(B) versus B for several forms of spatial correlation p, are
given, including exponential and Gaussian spatial correlation and

18
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exponential and Gaussian modulation of a sinusoid or Bessel function for
the spatial correlation Thefactorpreceding U_(B) in(60)is held con-
stant for these plots; thus, the geometry, acoustic frequency, andcorre-
lation distances are considered fixed. Each plot, therefore, measures
the dependence of the mth scattering strength S_ on surface roughness

B as the rms wave height o is varied.

For directions other than specular, a ;‘ 0, and a change of variable
in (57) yields

2
S, = B v, (e,p) , (62)

L L
2 7x 2
‘o(“i‘;*bff)

where

V(e B =Gntep 69 [ds 51,0 [l B2,/ - 5,.] - (63

The fuaction V_ (a,f) in (63) depends on a, B, and the form of the
spatial correlation'function p,. If the factor preceding V,_, in (62) is
held constant, the geometry and the ratio of correlation distances must
be considered fixed. Then, the function V_, measures the dependence of
scattering strength on a as thecorrelationdistances L _ and L are
varied (although their ratio is fixed)and on B as the rms wave height o
is varied. Plots of V_ (a,B) versus a and f for several forms of
p, are also presented in Section 5.

For the particular surface correlation function form assumed in
{52), the general expression for the correlation function of the received
scatter pressure waveform given in (41) takes a special form. It is,
using (56),

R,(0=B2,L) & L)% crp(iant 1) 2m)! exp (-8 T e
s x 2 R: ° (64)

I, (anlexp{B2p, (r, D1 ~1]

Thus, only a single integral need be evaluated in order to obtain the
scatter correlation function. The scatter spectrum follows from (43}.
Arbitrary surface roughness is allowed. The scattering strength for the
total scatter power is, using (C-12) and (54),
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S =—E—]_(6_OT= '?—'(R.L‘) (k.Lv)(Zﬂ)-l exp (—ﬂz) fdere -
Q! Q °
(65)

J, (an exp iszz(r)l - 1]

Again, a cingle integral must be evaluated for the scattering strength,
and arbitrary sutface roughness is allowed.

3.4 NARROW-BAND SIDEBAND SPECTRA FOR SMALL ROUGHNESS

The spectrum of the received scatter pressure was represented
as a sum of narrow-band lobes ir {47) and (48) for general surface
roughness § andnarrow-bandcorrelation p. (SeeFig, 2.) For small
B, a useful approximation to (48) can be made: first note {11, 8. 445]
that

T, m=0
I,(x)-g6, = for x <<1 . {66)
(1/2')"l , m>1
m!

When we employ this approximationin (48) and use (D-7), there follows
T, () :—.’i B* exp(-B?) [fdudv explik, (au+bv)] fdw g(u, v, v)_&' (v, v, w-£) ,

T, (H Z%Bz exp (=82 ffdudvexplik (av+bv)] glu,v,f) , (67)

T, Eé—ﬁ‘ exp (-8?) ffdudv explik, (au+bv)] fdw g(u, v, w) glu, v, f-w)

The largest term is T, (f), which is proportional to ﬁz and to the
double Fourier transform of the low-pass spectrum g of the surface
correlation. T, (f) is not simply proportional to g(0,0,f), the low-
pass spectrum at a point of the surface-height variation, T, (f) is pro-
portional to B* and is related to the autocorrelation of the low-pass
spectrum g. Tz {f) is proportionalto B* andrelatedto the convolution
of the low-pass spectrum g.

For the special case when the spatial-temporal surface correlation
function is separable in space and time variables,
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plu, v, r)=p3(u,v) p (), (68)
glu,v.f) is also separable,
B B0 = p 0, g, (0 (69)
and the frequency-dependent terms of (67) are given by
fdwg, (w) gilw-0 (70a)
g6 (70b)
Jdwg, (w) g (f-w) (70¢)
respectively, Since, from (69),
80,0,0)=g,() , (71)

g4(f) is proportional to the surface-height spectrum at a point and,
therefore, is real, Equation (70) states that the zeroth-order scatter

sideband spectrum T (f) isdirectly proportionalto tbh: autocorrelation
of the wave-height spectrumand is evenabout f = 0 {which corresponds
to f=1f, in the received acoustic spectrum). Also, the first-order
sideband spectrum is directly proportional to the wave-height spectrum,
and the second-order sideband spectrum is proportionz! to the convo-

lution of the wave-height spectrum and need not be even about f = 0
(which corresponds to f=f_ + Zfs in the received acoustic specirum).

The mth order sideband T_ (f) is proportional to B*® for small
B and Iml 2 1. This sideband involves higher order convolutions of
the low-pass spectrum, thereby causing significant spreading in fre-
quency. This is consistent with the observations made in the text
following (30).

3.5 RMS BANDWIDTH OF SIDEBANDS FOR SMALL ROUGHNESS

It is of interest to know quantitatively the amount of frequency
spreading that each sideband undergoes. One simple measure of this
spreading, short of evaluating the actual sideband spectrum, is the
rms bandwidth of each sideband. We start by defining the rms band-
width B of the surface-height spectrum g for the special case of
(68) according to
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p2. (4 gl0,0.0 _ [dff? g ()

=[aff? g (D) ,
[dfg0.0,0  [df g (D & (72)

where we have used Appendix D and the fazt that
p,(0,0) =p, (0) =1, (73)

since p(0,0,0) = 1,

For small roughness, the spectra of the zerothand first- and second-
order sidebands are given in (70)., From (70b), it follows immediately,
using (72), that the rms bandwidth B, of the first-order sideband is
equal to B_, the rms surface-spectrum bandwidth. The zeroth order
rms bandwidth B  is available from (702) as

, S [dw g (W) g (w-D)

= = 2B!
[df [dw g, (w) g, (w-1)

(74)

o )

utilizing the fact that
fdff §4(f)=0 , (75)

from (D-5), (D-6), and (69). Similarly, it may be shown, in general,
that the rms bandwidth of the mth order sideband is given by

V-Z-Bs, m=0

B_ = (76)

m Vl':-lgs,maéoj

if B << 1. Thus, the zerothandsecond-order sidebands are V—Z- wider
than the surface spectrum, and the higher order bandwidths increase

as the square root of the order number, For the small roughness case,

the correlation distances or direction cosines do not enter into this
relation,

4, RELATION OF SURFACE CORRELATION FUNCTION TO
DIRECTIONAL WAVE SPECTRUM

The results in the previous section require specific forms for the
spatial-temporal surface correlation p for their numerical evaluation.
Inthis section, we shall use the relation between the surface correlation
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function p and the directional wave spectrum for a wind-generated
sea composed entirely of gravity waves, and specialize to several
cases of interest,

4,1 GENERAL RELATIONS

For a homogeneous surface, the spatial-temporal surface corre-
lation function plu,v,7) can be expressed in terms of the directional
N
wave spectrum A? (e, v) [13, Part 8; 10, Chapter 8]:‘

otplu,v,7) = [[dp dv A% (i, v} coslup+vv-g% (2 +vd)% 7] | (77)

where g is the acceleration of gravity and p and v are the wave
numbers in rectangular coordinates, In particular, the temporal corre-
lation of the surface-height variation at a point is given by

025(0,0,7) = [fdpu dv A% (g, v) coslgh (u2+vD)% 2} (78)

Ap alternate representation of the directional wave spectrum in terms
of the polar form A? pu,v) is often used:
A2 (o) - g% A2 (g% (u2+vD%, tan~ v /p) ‘ (79)
2 (u2+V2)’/‘
If we substitute (79) into (78) and make the substitutions p = (27w f)2 cos G/g,
v = (ZTrf)2 sin9/g, the surface-height temporal correlation becomes

-] w
02p(0,0, 7) = 27 [ df cos (2nfr) [ 40 A2(2rf, 0) . (80)
[] -

The (double-sided) surface-height spectrum (at a point) is denotzd by
®(f) and is the Fourier transform of (806):

w
O(f) = [drexp(~i2nfr) 62p(0,0, 7) = = [ d6 A%(27|£|,6)
-
(81)

w 22 22 -
= (2m) g2 lfl’fdafa”(“”‘ 056 | Anlsinf)
-7 g g8 )

The last form follows from (79).

4.2 ELLIPTICAL SURFACE CORRELATION

The results above are for general directional wave spectra. Here
we will conesider a special case of particular interest, We assume first
. . "N
that the directional wave spectrum A’ possesses 180° symmetry:
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This is done for mathernatical tractability, rather than for any under-
lying physical reason, Then, from (?7), p{u,v,r) is even in r for
aill u,v:

plu, v, =7) = plu, v, 7) . (83)
When we use (D-15) through (D-17) and (77), there follows
p(u,v,0) = plu,v,0) = [{dudv 072 A% (g, v) cosivp+ww) . (84)

But this ‘relation zan be inverted by a double Fourier transform to
obtain the dircctional wave spactrum A? (x,v) in terms of gfu,v,0):

0" A%y, v) = (2n) ¥ ffdudvexpl-i{gu+v)] plu,v,0) . (£5)

We have used the symmetry of A? in obtaining (85).

For the elliptical correlation form assumed in (52), we had in (54)

u 2 v 2
ela, V'°)=P2< (L—) +<l:—)> (86)
] x y

If we substitute (86) into (85), the directional wave spectrum takes the
form

Ay =0’ L L (207 [ drep, (1, (\/(x_,‘u)2 +(Lyu)?:)
o

87
§A§ (V(pr)z+(l.yv)2) . (87)

Thus, the directional wave spectrum is ajso elliptical if the surface
correlationis elliptical at zerodelay. (An isctropic surface is a special
case of {87).) Equatic1 (87) may be expressed compactly as

Ag(r]\ =a? LXLY(Zn)'l 7 derp, ] (90) . (88)
[+]

For any particular form of spatial correlation P, (88) can be evalu.-
ated numevcically; then, (87) yields the directional wave spectrum,

Conversely, if the directional wave spectrum A? s elliptical, so
also is g(u,v,0). The exact relation is obtained by setting
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gz(yqv)g,‘g (\I(Lxﬂ)z +(Lyv)2-) (89)

in {84). There follows

2 -1, 7 2 uy? w2
2, v,00=(¢’L L) Zﬂ{danz(r,) Jo (L ) +(_l:._.) 7

Epz( 5 +(T;)) | (90)

or more compactly,
0o =L L) 20 [ dny A2, () (91)

Equations (88) and (91) are a Hankel-transform pair of order zero
[14, P. 136]. Specification of either p, or Ag determines the other,

The surface-height spectrum &(f) for the elliptical surface corre-
lation is obtained by substituting (89) into (81):

4 <2463 [ 2 ] —= 4’ f
&) = (20" g% | £] .j;'dOAz V(L‘cose) +(L’sm0) . . (92)
For the special case of anisotropic surface, L, = L, = L, (92) becomes
242
®© = @) g2 (€1} A;(:‘l'—‘-l:) (932)
8
and {91) takes the more familiar form

o2p,0) = | Af120(0) ], (“"2‘2"‘) : (93b)
° 8

Here, 2®(f) is the equivalent single-sided surface-he.ght spectrum.

4,3 EXAMPLES
Four examples of the elliptical surface correlation function given in

(86) will be considered. The first is exponential decay of a cosinusoidal
spatial variation:

25




rwm« TR T TR T LeTeT D e e B TS T TR O ORRARG MRt TS cames maE T UESST TR osema IS e smmomaniar e seasos

] p,(r) = exp(~Re) cos (Qr), r 20 . (94)

For Q equal to zero, simple exponential decay of the spatial corre-
lation is realized. R is of the order of unity. When we substitute (94)
into (88), it follows that {11, 6. 623 2]

1+iQ/R
Alp =0?L L 2n"'R? Re " (95)
[(1+iQ/RYZ + (y/R)?] :
L The surface-height spectrum for the elliptical surface correlation then

requires the numerical evaluation of (92). For an isotropic surface,
1. = Lv = L, substitution of (95) into (93a) yields for the surface-height

2 L &
®(f) = 2n0 &tb(x) ) (96)

spectrum
where the dimensionless parameter x is defined as

L
x=2”fJgjﬁ , (97)

and the dimensionless function @ is defined as

~ 5 1+iQ/R

o) =|x!3Re (98)
l[(l+ iQ/R)?2 +x‘]3/2}

A plotof the frequency-dependent term ® isgivenin Fig. 3 for several

values of Q/R < 1. As x » 0+, the Re component of (98) approaches

1-(Q/R)2
(1 +(Q/R)?)?

Since the surface-height spectrum can not be negative, it is necessary
(but not sufficient) that Q/R <1 in order for (94) to be a valid fo~m of
spatial correlation. The spectrum of (96) decays as |f["> for large
frequencies.

(99)

Since Q wasupper-limited to a value of unity in the above example,
the surface-height spectrum can not be made arbitrarily narrow. It is,
therefore, of interest to demonstrate thatarbitrarily narrow spectra are
possible through a slightly modified spatial correlation, namely, ex-
ponential decay of a Bessel function:
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p,(0) = exp(~Rr) J (Qr), r20 . (100)

This function also oscillates with r, but decays slightly faster than
(94) because the envelope of J, (t) decays as t™% for large t. M we
substitute (100) into (88), there follows [15, pp. 314-316, Eqgs. (11), (14),
and (19)]

Azz(r]) = ozL‘Ly (2m! [ drcexp(-Re) J_(Qn) ], (no)

] fogey] e ™

where FE(.) is a complete elliptic integral of the second kind with
moduius {16, Chapter 17; see especially p. 590]

A1)
k={421[1+(l+9.)] } , (102)
R R R R

-1
Q 7 7 Q 2]
m=4 — |1 + [+ — .
22fge

The surface-height spectrum follows upon substitution of (101) into
(92) for the elliptical surface correlation case. Since A§ (m) of (101)
is positive for all choices of Q and R [16, p. 609; m of (103) is
always less than unity], the surface-height spectrum &(f) of (92) is
nonnegative; therefore, we consider the spatial correlation form in
(100) for arbitrary values of Q and R.

or parameter

Rather than evaluate (92) numerically, we restrict attention here
to the isotropic surface and use (93a) to obtain the surface-height

spectrum:
) = 2n0? F@(x) , (104)
gR
where
L
=2nf @l—
x=2n J;; R (105)
and

B = Lpxp [H(,z__g_)’]" [“(,z +§_)’]'” EQ) . (106)
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The parameter m of the complete elliptic integral is given by

-1
49 Q\?
m=dZx? [l+(x2+i-) ] . (107)

The frequency-dependent function &(x) is plotted versus x in Fig. 4
for several values of Q/R. The spectrum decays as |f|*3 fov large
frequencies. The narrow-band character of the surface-height spectrum
for large Q/R is evident,

The third example of spatial surface correlation is Gaussian decay
of a cosine?:
p, o) = exp(-R2r?) cos(Qr), £>0 . (108)

Substituting (108) into (88), we obtain
AZ(p) =”2L,Ly (201 R™? of detexp(~t?) cos (%t) I (—Zit) . (109)

The surface-height spectrum for an isotropic surface follows upon
substituting (109) into (93a):

O = 2707 gl Bx) (110)
gR
where
L
= f —
x=2n Jg: (111)
and
$(X)=ix|3fdttexp(—t2) cos(-Q—t) ], =20 . (112)
o R

This function is plotted in Fig. 5 for several values of Q/R., (The method
for evaluating (112) is given in Appendix E. For Q/R>1. 848, &(x)
goes negative at the origin, thereby invalidating (108) in that range.)

The fourth example of surface correlation to be considered is
Gaussian decay of a Bessel function:
pz(r)=exp(-R2t2) J,(Q, >0 . (113)

Q equalto zerocorresponds to Gaussian spatial decay of the correlation.
When we substitute (113) into (88), there follows [i1, 6. 633 2]

% This is a form teated by Lysanov (Ref. 17) anc suggested by Schulkin (Ref. 18, p. 42).
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1 Q’+’\ (On
Al =02LxLy(4n) ‘E; exp (— Py l°(-2_R? ] (114)

The surface-height sp~ctrum follows upon substituting (114) into (92)
for the elliptical surface correlation case, Since A%(n) of (il4) is

positive for all choices of Q and R, the surface-height spectrum

®(f) of(92) is nonnegative; therefore, we consider the spatial correlation
form in (113) for all Q and R,

The exponential and Bessel function in (114) can be expressed as

oo (- (=2)) (_81'.) (_Q"_)
xp( (m)) *®\ "Rl I RE (115)

Since the fu ction exp(-t) I, (t) is weaklydependent on t, itis seen that
A§ (n) possesses a peakapproximatelyat n = Q cf widthproportional
to R. The integralof(92)for ¢(f) tends to smooththis peak. However,
the isotropic surface-height spectrum of (93) does not involve this
smoothing and is a peaked spectrum; a measure of the peakedness is
the ''quality'' ratio of center frequency to bandwidth, and is related to
the ratio Q/R for this example,

The surface-height spectrum for an 1sotropic surface is obtained
by substituting (114) into (93a), and is given by

Q(ﬂ=2nazJ§a(x) . (116)
where
xsanJ——E— (117)
2R
and
3 Q\’ 4 Q 2
¢(x)s%|x|3exp[-%(R—-) -‘4X] lo(%-i!) . (118)

The frequency-dependent term ® is plotted versus the dimensionless
parameter x in Fig, 6 for several values of Q/R. The spectrum
decays as exp(-cf') for large frequencies.

The narrow-band character of the surface-height spectrum is

evident from Figs. 4 and 6 when the ratio Q/R is large compared to
unity.
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5 SCATTERING STRENGTHS OF SIDEBAND COMPONENTS

r'or the case of a narrow-band surface-height spectrum, the scat-
tered acoustic spectrum at a receiving point may be obtained from (47)
and (48). The generalform of the received acoustic spectrum was shown
in Fig. 2 to consist of a series of spectral lobes or sidebands, each
separated from the incident acoustic frequency f_, by multiples of the
center frequency fs of the surface variation, plus an impulse at the
acoustic frequency f,. This impulse is the coherent component,

The totalacoustic power in eachspectral lobe, or equivalently the
scattering strength, may be obtained from (60) and (61) for the sp: cular
direction, and from (62) and (63) for the nonspecular direction, In
this section, we will evaluate U, () and V_(a,B), as given by (61)
and (63), respectively. As mentioned in Subsection 3,4, if the factor
preceding U_(B) is held constant, the geometry, acoustic frequency,
and correlation distances are considered fixed. The plot of U, (B),
therefore, measures the dependence of the mth scattering strength
on the surface rms wave height o through the roughness parameter
B. V, {a,B) measures the dependence of the mth scattering strength
on the correlationdistances L. and L (2lthough their ratiois fixed)
through a, andon the rms wave heighty o through p. (Integrals (61)
and (63) werse numerically evaluated by Simpson's Rule; the error
analysis is contained in Appendix F.)

In Figs. 7through9, U, (B) isplottedversus f for m=0,1,2,3,4
for an exponentially modulated Bessel function spatial correlation,

p,(0) =exp(~0) J (Q) , (119}

for values of Q = 8,4,0. In Figs. 10throughl2, a similar set of curves
is plotted, the oniy difference being that the spatial correlation is a
Gaussianly modulated Bessel function:

p,0) = expl(=c?) ] Q) . (120)

To betier explain these figures, let us concentrate temporarily on
Fig. 12; here Q = 0, meaning the spatial correlation is Gaussian.
U, (B) corresponds to the scattering strength in the first sideband
(either above or below the acoustic frequency f ). Since a =0, we
are considering only the specular direction. § = 0 corresponds to a
flat surface; for this value of B, there is no scattered power in the
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sidebands since all the reflected power appears in the coherent com-
ponent, As f increases, thereis iess power in the coherent component,
and more scattered power appears in the sidebands. The power in the
first sideband reaches a maximum value when the surface roughness
parameter B is approximately unity, and decreases thereafter., For
these larger values of B, the surface is rougher, and more of the
scattered power will appear in higher-order sidebands in directions
other than specular. We have plotted the zeroth through fourth-order
sideband scattering strengthfactors U, (B) . Figs. 7 through12. All
the curves initially increase as f increases from zero, reach a
maximum, and then decrease. For large B, there is little ditievence
in power between the various sidebands,

For Q =4, or 8, the gross features of the sideband powers are
similar to those for Q = 0, whether the modulation is exponential or
Gaussian. However, whereas for Q = 0, U,(B) is larger than U (B)
for a largerangeof P, thereverseis truefor Q = 4 and 8, For larger
Q, the zerothand second-order sidebands contain most of the scattered
power in the specular direction. As Q increases, the power in each
sideband, for a given roughness B, decreases. The reason for this
is that the total scattered power in the specular direction decreases
with increasing Q, since the correlation distance decreases. (This
latter effect is due to the factor J, (Qr) in(119) and(120), which decays
with r in addition to the exponential terms.)

For small B, the power in the first sideband is proportional to
62 , and the powers in the zeroth and second-order sidebands behave
as B' (See (67)). This is not apparent in Fig. 10 for the Gaussian
modulated case for Q = 8, because the effect occurs at smaller B
values than plotted,

The major difference between the exponentially modulated and
Gaussianly modulated curves occurs at larger values of B. Here the
sideband powers are much larger for the Gaussian case than for the
exponential case. This is true for all Q and all orders of sidebands
plotted.

In Figs. 13 through 27, three-dimensional plots of V,(a,B) versus

a and B are given for m=0,1,2,3,4 and for an exponentially
modulated Bessel function spatial correlation (See (119)) for values of
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Fig. 13 -V, for Exponentially Modulated Bessel Function Spatial Correlation, Q = 8
(Vo =-268 - 107  at a=151/3, B = 1.6)
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Fig. 18 - V for Exponentially Modulated 3essel Function Spatial Correlation, O = 4
(Vo =19 10"  at a=72/3, B = 1.6)
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Fig. 19 - Vl for Exponentiaily Modulated Bessel Function Spatial Correlation, Q = 4
(vV,=.95:10"" at a=413, B =10)




Fig. 20 - v, for Exponentially Modulated Bessel Function Spatial Correlation, Q = 4
; (v,=.106 . 10"  at a=8,8x17)
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Fig. 24 - V, for Exponenrial Spatial Correlation
(V,=120-10"" at a=123, B=1.1)
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Fig. 25 - V, for Exponential Spatial Correlation
(v,=643-10"2at a=623,8=22)
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Fig. 26 - Vv, for Exponemtial Spatial Correlation

(V,=.460 - 1072 at a=14173, B=3.2)
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Q =8,4,0, In Figs, 28 through 42, a similar set of curves is plotted;
the only difference is that the spatial correlation is a Gaussianly
modulated Bessel function of the form of (120). These functions were
computed for a = 0(1/3)20 and B = 0(.1)6. The maximum-values
attained by V_(a,B) at this grid structure are presented in Table 1
and are noted on each plot. (These values are not necessarily the
maximum values of Vm (a,B), but simply the maximum values at the
sample points investigated.) Since the plots are isometric, values of
V, (a,B) at other values of a,B can be obtained by measuring the
vertical distance above the a,f plane and scaling according to the
values given,

To explain the detailed behavior of these plots, it is helpful to
consider B as a measure of the surface vertical roughness, and a
as a measure of the surface horizontal roughness. As B increases,
the surface becomes rougher in the vertical direction; also as a
decreases, i.e., the correlation distances decrease, the surface
becomes rougher in the horizontal direction. For a given a, the

behavior of V_(a,B) with B is similar to that observed in Figs, 7
through 12,

For p =0, V, (a,P) is zero for all a since the surface is flat
and thereis no scattered power, As B increases, the scattered power
increases, reaching a maximum, As f increases still further, the
curve decreases, indicating that more of the scattered power appears
in higher order sidebands. Note from the plots that for a given sur-
face spatial correlation and a given Q, the locatiocn (a,f), at which
V, (a,P) reaches a maximum value, increasesas m increases; i.e,.
the peak location recedes from the origin.

For a given B (fixedroughness)and a large a (large correlation
distances), the surface is very planar, resulting in most of the re-
flected power appearing in the specular direction. As a decreases
from large values, the surface becomes less planar, more power is
scattered in the nonspecular direction, and V_ increases. However,
as a decreases still further, the surface becomes rougher in the
horizontal direction, and more of the scattered power appears in the
higher order sidebands, so that each particular V_ (a,p) decreases
with a in this range. The ratio f/a is a measure of the average
slope of the surface; as this ratio increases, more of the scattered
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Table 1

APPROXIMATE LOCATIONS OF MAXIMUM

VALUES OF V, (a,p)

Fig. a p V, (a,B)
No,
13 15113 1.6 .268 - 107!
14 8 1.0 .763 - 107!
15 15173 1.6 .144 .- 10!
16 20 2.4 .678 + 10-2
17 20 2.9 .392 - 102
18 723 1.6 .196 - 10-1
19 4173 1.0 .395 .« 10-1
20 8 1.7 .106 - 10-1
21 17 2,9 .601 - 102
22 20 3.4 .425 + 102
23 4 1.7 .106 - 10-1
24 123 1.1 .120 - 10-!
25 623 2.2 .643 - 10-2
26 1413 3.2 .460 - 10-2
27 20 3.9 .352 - 10-2
28 15 1.6 .325 . 10-1
29 8173 1.0 .705 - 10-1
30 1513 1.7 .177 - 10-t
3] 20 2.7 .890 - 10-2
32 20 3.1 .570 « 10-2
33 7 23 1.6 .249 - 10-!
34 423 1.1 .398 - 10-1
35 8 1.8 .141 - 107!
36 1311 3.1 .903 - 107?
37 18 4,1 .690 + 1072
38 3 1.7 .210 - 10-!
39 2 1.1 .237 - 19!}
40 4 2.2 .125 .« 10-1
41 613 3.3 .886 - 102
42 8 4.1 .683 - 10-2
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Fig. 28 - Vp for Gaussianly Modulated 3essel Function Spatial Correlation, Q = 8
g (Vy=-325-10"" at a=15, B=16)
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Fig. 29 - V, for Gaussianly Modulated Bessel Function Spatial Cotrelation, Q = 8
(V,=705-10"" ac a=813, B = 10)
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Fig. 30 - V, for Gavssianly Modulated Bessel Function Spatial Correlation, Q = 8
V=377 . 107 at a=1513, B=17)
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Fig. 31-V, for Gaussianly Modulated Bessel Function Spatial Correlation, Q=8
(vV,=890-10"%at a=26, 8-27)
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Fig, 32 - v, for Gaussianly Modulated Bessel Functinn Spatial Correlation, Q = 8
(Vy=.570.10"%at a=2, B=3.1)
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Fig. 33 - V, Tor Gaussianly Modclated Dessel Function Spatial Correlation, Q = 4
(Vo =249 .10 ot a=723, B=1.6)
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Fig. 34 - V, for Gaussianly Modulated Bessel Function Spatial Cortelation, Q = 4
(v,=.398-10""at a=4273, B=11)

65




66

Fig. 35 - V, for Gaussianly Modulated Bessel Functioa Spatial Correlation, Q=4
(vV,=.141-10"" ar a=8, B =18)
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Fig. 36 - v3 for Gaussianly Modulated Bessel Function Spatial Correlauon, Q = 4,
(V=907 -10"2at a=1313, B=13.1)
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Fig, 37 - V, for Gaussianly Modulated Pessel runction Spatial Correlation, Q = 4
(v, =69 1072 st a=18,B=4.1)
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Fig. 38 - V, for Gaussian Spatial Correlation
(Vo=-210.10""at a=3,8=17)
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Fig. 39 - v, for Gaussian Spatial Corelation
(V;=.237 20" at a=2,8=11)
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Fig. 40 - V, for Gaussian Spatial Correlation
(V,=.125.10" ot a=4,B8=22)
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Fig. 41 - v, for Gaussian Spatial Correlation
(v, =.886 - 10°%2 at c=613, §=3.3)
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power appears in the higher order sidebands, This behavior can occur
through either increased B (roughness)or decreased o (correlation
distances),

As a approaches zero, for the nonspecular direction, the corre-
lation distances approach zero. For this case, the surface becomes
very rough and, in the limit of zero-correlation distances. has the
properties of white noise, Although mathematically, for o = 0, the
amount of scattered energy in the sidebands is zero, the initial as-
sumptions (See Section 1) are violated for small correlation distances;
therefore, this portion of the plots does not have physical significance.

Curves of v, {a,B) for P, {r) = exp(-r) cos(Qr), Q = 1, were also
obtained, but have not been included because they are very similar to
the corresponding curves for p,(r) = exp{-r) Jo (Qr); in particular, the
omitted curves are more peaked than exp{-r), but not as peaked as
exp(-r) J, (4r). Similarly, curves of V_ (a,8) for p,(r) = exp(-rz)-
cos{Qr), Q = 1.8482777,° were also obtained and exhibited behavior
intermediate to that of exp(-r?) and exp(-r?) J (4r).

Let us now compare the exponentially modulated Bessel function
plots with those of the Gaussian modulated Bessel function plots. For
large 8, the Gaussian case has more power in a given sideband than
that of the corresponding exponential case, This behavior is similar
to that of the U_ curvesin Figs. 7 through 12, For Q = 0, the corre-
sponding exponential and Gaussian plots are somewhat dissimilar,
However, for Q = 4, the corresponding curves of the exponential case
are more nearly similar to those of the Gaussian case, whereas for
Q = 8, thetwo sets of curves are almost identical. Thus, for small Q,
the envelope of the spatial correlation of the heights is the controlling
factor, butas Q increases, the number of oscillations per given distance
of J (Qr) increases, and J (Qr) becomes the controlling factor in
spatial correlation,

6. DISCUSSION

In summary, an analysis was made of a time-varying random
surface statistically stationary in both space and time. The reflected

10These choices of Q are the largest possible consistent with a nonnegative surface-height spectrum;
see Subsection 4.3.
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acoustic spectrum was obtained in terms of the first- and second-order
characteristic functions of the surface-height variation, For the special
case of a Gaussian distribution of surface heights, a narrow-band
surface spectrum, and a surface spatial-temporal correlation function
that is stationary in the wide sense, the mathematical equation for the
received acoustic spectrum showed that the scatter spectrum is com-
posed of spectral lobes, or sidebands, centered at frequencies equal
to theaconstic frequency plus multiples of the surface-center frequency
(See (47) and (48)). For the special case of a surface spatial correla-
tion that haselliptical contours, the evaluation of the complete spectrum
canbe expressed as a Fourier transform of asingleintegral. The com-
plete spectrum was not numerically evaluatedin this report, but should
be obtained in future work. In addition, the restriction to a symmetric
directional wave spectrum, (82), should be eliminated. For example,
received spectra for hemispherical directional wave spectra should be
computed; this will yield unequal scattered sideband powers.

The power in eachsideband was evaluated for a variety of conditions
and spatial correlations. It was found that the zeroth and second-order
sideband powers had a very similar behavior with surface roughness,
whereas the other sidebands had a somewhat different dependence. It
has been assumed that there is not an appreciable overlap of the side-
bands; for large surface roughness, there would be an appreciable
overlap of sidelobes, and the complete spectrum would have to be
obtained for this case.

It is worthwhile to discuss the difference between the surface
treated in this report and the fixed-amplitude sinusoidal surface con-
sidered by Roderick and Cron [7]. We have considered a narrow-band
spectrum for the height variationat a pointon the surface, and assumed
the joint probability density of the surface heights to be Gaussian. As
the bandwidth of the surface variation decreases and approaches zero,
the properties of this surface process do not approach the fixed-am-
plitude sinusoidal surface case. For example, the distribution of
heights remains Gaussian and is, therefore, different from the prob-
ability density associated with a sinusoid. The scattered powers in
the sidebands, as given by the narrow-band Gaussian theory, are
different from those of the single-frequency sinusocidal theory.

5




In mathematical terms, the first-order-characteristic functionof a
fixed-amplitude sinusoid is a Bessel function. If we average this Bessel
function with the Rayleigh distribution of sine wave amplitudes, we
cbtain the Gaussian first-order-characteristic function. Thus, our re-
sults can be viewed as a particularaverage over the sinusoidal surface
case,

However, a narrow-band time function with center frequency f,
and bandwidth W resembles asine waveof frequency f, over ashort
period of time, but will differ from a sine wave over a longa» period
of time. The difference will show up on the order of W™! sec. Thus,
if we obtain a short sample of the reflected signal from a narrow-band
surface, and determine the received acoustic spectrum from it, the
single-frequency theory (with the current surface-height amplitude)
should accurately predict that spectrum. However, for a long-time
averageover the statistical prouperties of the surface, the narrow-band
Gaussian theory, not the fixed -amplitude single-frequency theory, must
be used to predict the expected behavior of the spectrum.

This report has concentrated on the spectral quantities of the re-
flected signal. However, the probability distributions of the envelope
of the individual sidebands can also be obtained in at least one important
case, If the arca of insonification is much larger than the correlation
area of the surtace (product of correlation distances), we can appeal
to the Central Limit Theorem and state that the envelope and phase dis-
tributions of the mth component of the received scatter pressure field
are Rayleigh and uniform, respectively, for m # 0. For m = 0, the
scatter component combined with the coherent component results in a
Beckmann distribution [Z. Chapter 7]. (Of course, as the coherent
component tends to zero, the Beckmann distribution tends to the Rayleigh
distribution.) It should be noted that the assumption of Gaussian surface
statistics, i.e., {{x,y,t) Gaussian, does not necessarily imply that
the received pressure is Gaussian, because the received pressure is
obtained via a nonlinear transformation on { (See (3)); rather, it is
the assumption of a large number of independently reflecting surface
portions that yields the Gaussian behavior.
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Appendix A
GEOMETRY FACTOR
The factor B in (3) is given different values by different authors,

For example, the values for B given by Parkins?*' and Beckmann and
Spizzichino,*? using the notation in this report, are

_l+";‘:‘o -?A _ l+aQaA+beA+chA
- = » (A"l)
3 PN

whereas Eckart?’ gives the following value for B:

+c, . (A-2)

Beckmann and Spizzichino™ attribute the discrepancy to the replace-
ment of the normal to the surface by a vector in the z-direction, an
approximation that is valid only for surfaces with very gentle slopes.

For the specular direction,

a,=-ag, bA="'bQ' €A=Cq > (A-3)

both forms for B above become c,. Thus, there is no difference in
the specular direction, However, there can be significant differences

for other cases. For example, the second form for B depends only on

the direction cosines with respect to the z-axis, but the first form
depends on all direction cosines. Thus, at normal incidence.

aQ=bQ=0,cQ=l R (A-4)

Alg, E. Parkins, “Scattering from the Time-Varying Surface of the Ocean, " Journal of the
Acoustical Society of America, vol. 42, no, 6, December 1967, Eq. (10), p. 1263,

A2p, Beckmann and A, Spizzichino, The Scattering of Electromagnetic Waves from Rough
Surfaces, The Macniillan Co., New York, 1963, Eqs. (11) and (12), p. 27, and Eqs, (29) and (32),
pp. 22-23, .

A3¢, Eckart, "The Scattering of Sound from the Sea Surface, " Journal of the Acoustical
Society of America, vol. 25, no, 3, May 1953, Eq. (6), p. 567.

Mpeckmann and Spizzichino, Appendix A, op. cit,

79




and the two forms for B become
l'and%(HcA) , (A-5)

respectively. For an observation point near grazing, these terms differ
by a factor of 2 in pressure.

Rather than attempt to resolve the differences in the scale factor,
we have expressed all our quantities in terms of the general symbol B
and leave it to the reader to make his choice as to the correct factor.
¥or a fixed geometry, so far as the relative spectral coatent of the
received acoustic waveform is concerned, the exact geometric factor
is not important under the assumptions of the present theory.

80

e S e ) S

TR

i A Ad g 193 AN S s

L




B L

Appendix B
CORRELATION PROPERTIES OF SINGLE-SIDED PROCESS

Suppose x(t) is a wide-sense stationary single~zsicie(:1m {(complex)
process with no dc component, Let

x(0) =x (¢) +ix; (1) , ; (B-1)

where
x (0 =%x@+x* )] ,
1 . (B-2)
x, (8 =§T[x(t)—x (03]
Denoting the Hilbert transform by i}, we have
Hix 01 =4%[¥ix(0] + Xix* (91)
(B-3)

=H%l-ix@)+ix* Ol =x,(0) ,

where the single-sided character of x(t) and its lack of dc has been
utilized, The Hilbert transform is represented by a linear networkwith
transfer function -isgn(f). Therefore, the transformation between
x {t) and X, (t) can be represented as in Fig, B-1.

% O J— x; (1)

Fig. B-1 - Hilbert Transform

Thus, we have derived the fact that the imaginary part of a2 wide-~-sense
stationary single-sided process is the Hilbert transform of the real
part.?? When the properties of linear networks are used, it follows

from Fig, B-1 that

L
B1 Single-sided means that the power deasity spectrum is confined to positive frequencies,
B2 This is the converse of the usual situation where a waveform plus i times its Hilbert transform

is shown to be single-sided,
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1,05 -1 =x©x =0 ,

x, (0 x (e=7) = —x, (1) x (t~7) (B-4)
Combining these properties, we find that
x() x(t-=r) =0forall 7 . (B-5)

Of course, x(t) x° (t-r) £ O.
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Appendix C
SCATTERING COEFFICIENT AND SCATTERING STRENGTH

The received (complex)pressure p(t) at the observation point was
given in (3). The scatter component p_(t) was defined in(11), and the
mean-square value of P, (t) was evaluated in (18) and (20)., In this
appendix, we will relate the scattering coefficientand scattering strength
to these quantities,

The average scatter intensity (power/unit area)at the receiver for
a real sinusoidal signal transmittal is

e, 01 /2

) (C-1)
v

where p isthedensityol the fluidand v is the propagation velocity,”!
If the receiver at A subtends a solid angle Q, as seen from origin O
in Fig, 1, the average received scatter power is

2
ILLR:Q , (C-2)
and the average received scatter power per steradian is
1 R ———
l,n§=;;|ps(z)|2n§ (C-3)

Since the incident pressure on the surface at x,y is ﬁi {(x, v¥)
(See (3)), the incident intensity at x, y is

B [ . (C-4)
2pv
Therefore, the total incident power on the surface is
cq [Mdxdy 5, (x,) |2 = -2 (0,0) | (C-5)
2pv 2pv
using (16).

The scattering coefficient or scattering cross section o_ isdefined
by Eckart® as

ClThe factor of 1/2 follows in a manner similar to that in (5) and (6).

€2¢. Eckar, "The Scattering of Sound from the Sea Surface, * Journal of the Acoustical
Society of Am :rica, vol. 25, no, 3, May 1953, Eq, (18), p. 568, and Eq, (10), p. 567.
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[

ip, @[ R2
O = s
s j(0,0) (C-6)
which can be manipulated into the forms
Ip (012 R 1 _R?
f[d’d)'lsi(x’y)lz {f dxdy -i;?l?;(xvy)lz
_ average received scatter power pet steradian (C-7)

]

incident power on surface / ¢ 0

where we have used (16), (C-3), and (C-5).

For purposes of this report, the ''scattering strength'' S is defined
asC3
s = xlclt

I, i (C-8)

mc
where I___  is the average scatter intensity at the receiver due to unit
scattering area, referred tounit distance, and I, = istheaverage inci-
dent intensity on the surface, If we let A_, be the effective area of

insonification in the x, y plane (e.g.,

A 2
P,(x,y)
Ae“ﬂﬂdxdyl——-!ﬁi(o,!)) ) , {(C-9)

then
2 p2
Iscagg l’ 3’3 ‘p‘(t” RO (C-10)
Ay 20v A g
using (C-1). Also,
incident power on the surface
lhc =
Aefl
cg J0.0 (C-11)

14

) 2‘" Aelf
using (C-5), Taking the ratio of (C-10) and (C-11), we note that the
scattering strength becomes )

Ipﬁ(t)l2 Rz o

-, (C-12)

$ = e =
CQ ](oro) CQ

C3R. J. Urick, Principles of Underwater Sound for Engineers, McGraw-Hill Book Co., New York,
1967, p. 18, Section 8.2, Actually, Urick has a decibel ratio rather than a linear power ratio.,
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using (C-6). Thus, the scattering strength equals the scattering coef-
ficient divided by the direction cosine of the incident pressure with re-
spect to the normal to the surface, This latter quantity, o, /cQ, which
is exactly what has been recommended by some authors® as prefer-
able to o, alone, has been adopted in this report.

Notice that the exactdefinition of A_, didnotenter into S because
it cancelled in the ratio (C-8); therefore, (C~9) is merely one possible
definition of this quantity. An alternate definition of S, which avoids
this quantity altogether, is available upon substitution of (C-7) into (C-12):

_ average received scatter power per steradian
incident power on surface

S

(C-13)

C4c, W, Horton, Sr., and T. G. Muir, "Theoretical Studies of the Scattering Acoustic Waves
from a Rough Surface, " Journal of the Acoustical Society of America, vol. 41, no, 3, March 1967,
Section 11,C,, p. 630,
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Appendix D

COMPLEX ENVELOF & REPRESENTATION OF
NARROW-BAND, SURFACE-HEIGHT-CORRELATION FUNCTION

From (40), the surface-height correlation is

a?plu,v,7) = lx,y,0) Lz -y, y~v, t=7) . {D-1)

These are all real quantities, When the homogeneity and stationarity
of the surface is utilized, there follows

pl-u,=v,~r) = plu,v, 7} . (D-2)

We define a normalized cross-spectrum g as the Fourier transform
of p: glu,v, 0 = fdrexp(~i2nfr) plu,v, 7) (D-3)
It is a function of position differeaces u, v, as well as frequency f{,
and is neither real nor even in f; however, it is narrow-band. Let us

now define the single-sided spectrum as

2g(u,v,f, £>0
8+(ll,v.f) = { 0,f<0} . (D-4)
and the center frequency of surface vaﬂsiations at a point as
dffg, (0,0, ) 20,0,
(, L = % . (D-5)
s~ Jdfg,(0,0,0

f dfg(0,0,

The expression g(0, 0, f) is proportional to the surface-height spectrum
at a point; it is real and even because p(0, 0,7) is real and even, We
now shift the single-sided spectrum g, down by f_, toget a low-pass
spectrum g centered about zero frequency:

_E(u,v,f) = g+(u,v,f+f,) . (D-6)
Then, the Fourier transformof g isdefinedas the complexenvelope p:
elu, v, 7) = fdfexp (i2nf7) glu, v, 7)

=p, (u,v, 7 exp(—iZﬂf‘ 7, tB-17)

where we haveused (D-6) and defined p, as the Fourier transform of
g,. Now, using t Fourier transform of the unit step,b!

:f dfexp (i2m ) =% 5(0) +-2-‘; : (D-8)

Dl Papoulis, The Fourier Integral and Its Applications, McGraw-Hill Book Co., New York,
1962, Eq. (3-13).

87

3
1
3
N




AR R

p, can be evaluated from (D-4) as

p+(u,v, ) = plu,v, r)+ipH(u,v, 7, (D-9)

where p, is the Hilbert transform of p:
py (v, v, 7) =lﬁw——-—p(u’ %) . (D-10)
” r—-w

Combining (D-9) and (D-7), we obtain

plu,v, 1) =Relp (v, v, 1)}
(D-11)
=Relpu, v, ) expli2nf o} ,

which is the property desired in (44).

An additional property of complexenvelope g that will be necessary
is now derived from (D-10):

pyl-u,=v,~1) =—p (u,v,7) . (D-12)
Substituting into (D-9), we note that
p(=u,~v,=7) = p:(u, v,7) , (D-13)
and then from (D-7), we get
gl-u,=v,~7) = p* (u,v, 1) . (D-14) .
For the specialcase where p(u,v,r) isevenin r forallu,v, i.e.,
plu,v,~7) =plu,v,7) , (D-15)
a(u, v, 0) is purely real and is given by ’
e(n,v,0) = plu,v,0) . (D-16)
This may be seen as follows: From (D-10), using the evenness of p,
Py (@, v,0) =0. (D-17)

Then, using (D-9) and (D-7), (D-16) follows,
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Appendix E
NUMERICAL EVALUATION OF EQ, (112)

In (112), the surface-height spectrum was given in terms of an
integral:

8= |x|?  detexpl-e) coslqd J %) , (E-1)

where q = Q/R. Toevaluate this integral, we expand cos(qt) in a power
series in t and obtain

A oo 2a oo
Dlx) =1x13 LA | de t22H 1 egip (—e? 2y | -
(x) = | x| ..::o( f) o5 { e exp(~t?) J_(x%) (E-2)
The integral in (E-2), from Gradshteyn and Ry:«shik,":l is
% ot exp(-x¥4) L_G=Y4) , (E-3)
where L  is a Laguerre polynomial, Ther - .ore,
B0 = 3 ) S (o2ye 0 ‘
O(x) =% x|’ exp(—x /4)n§o( 99 o L (=%4) . (E-4)

This series, whichcan be easily evaluated byusing rec-irrence relations
on the Laguerre polynomials, is plotted in Fig. 5.

For x near zero, &(x) becomes negative if q is made too large,
From (E-1), it may be seen that the largest valueof q allowed is when
[ dteexp(=tH) coslq) =0 . (E-5)
o
That is, from Gradshteyn and Ryzhik,*?

% F % ~%qD) =0 . (E-6)
The solution for the smallest value of q satisfying (E-6) is

q=-§-~l.8482777 . (E-7)
Therefore, (112) has been plotted only for Q/R less than this value,

Ely s, Gradshreyn and I, W, Ryxhii, Table of Integrals, Series, and Products, Academic Press,
New York, 1965, Eq. 6.631 10,

E2 1bid,, Eq. 3.952 8,

89/90
REVERSE BLANK

et bt auiastd oLl velip st dofoadek s s ddslin do b ¥ on

o dod

i, SUgoEan o



Appendix F
ERROR ANALYSIS CF EQS. (61) AND (63)

The infinite integral of (61) must be approximated by a finite integral,
up to value L, say. In order to determine how large L must be for
negligible error, we note that for small x

x/2)2 , m=0

)-8 ~ . . (F-1)
(x/2)*
Tt " "2
Therefore, for large values of r,

[‘Aﬁzpz(r)}z , m=0
lm(szz(t)) =S ~ ) (F-2)
m 1
[%ﬁzpz(t)] m, m2>1

The slowest decaying order is m = 1; therefore, the largest error in
terminating the integral (61) at L. is approximately

E=(Q2n"'exp(-B) [ dtt%ﬁzpz(t) . (F-3)
L
When spatial correlation p, is an exponential modulation of either a
cosine or a Bessel function,
p, (1) = exp(~1) cos (Qr) or exp(~r} J_(Q) , (F-4)
(F-3) is upper-~-bounded by o
E <m0 exp(~-BA Y%B? [ drrexpl-r)
L (F-5)
=4 B2 exp (=B (L +1) exp(~L)
The largest value of P2 exp(-B?) occurs at B = 1, yielding
E <(4ne)™! (L+1) exp(-L) . (F-6)
For L =25, E<!0°M, The limit 25 was used in evaluating (61) for

the exponentially modulated spatial correlation; all the vaiues of U_ in
Figs. 7, 8, and 9 are much larger than 1071,

For a Gaussianly modulated cpatial correlation,

p,® = exp(-r?) cos (Qn) or cxp (~r?) JolQ) ; (F-7)
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the bound corresponding to (F-6) is

E <(Bre)"'exp(-L?) . (F-8)

For L=5, EL2x 10"", The limit of 5 was used in evaluating (61)
for the Gaussianly modulated spatial correlation; all the values of U,
in Figs. 10, 11, and 12 are much larger than 2 x 1075,

For integral (63), we can upper-~bound the integrand by replacing
the Bessel function by unity, The slowest decaying order isagain m = 1,
An analysis similar to that in(F -1) through (F-3) yields, for exponential
modulation, the upper bound on the error

E <(4me)"! a?(L+1) exp(~L) , (F-9)

whereas, for Gaussianmodulation, the upper bound onthe error is given by
E<(8re)"! a? exp(-L?) . (F-10)
For L =25, (F-9)yields 10""a?; for L =5, (F-10) yields 2 x 10~¥a?,
The interval (0, L), used in evaluating (61) and (63), was repeatedly

cut in half and evaluated by Simpson's rule until insignificant change
occurred in the sum,
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